10 research outputs found

    Viscous Fluids and Gauss-Bonnet Modified Gravity

    Full text link
    We study effects of cosmic fluids on finite-time future singularities in modified f(R,G)f(R,G)-gravity, where RR and GG are the Ricci scalar and the Gauss-Bonnet invariant, respectively. We consider the fluid equation of state in the general form, ω=ω(ρ)\omega=\omega(\rho), and we suppose the existence of a bulk viscosity. We investigate quintessence region (ω>1\omega>-1) and phantom region (ω<1\omega<-1) and the possibility to change or avoid the singularities in f(R,G)f(R,G)-gravity. Finally, we study the inclusion of quantum effects in large curvatures regime.Comment: 14 page

    Interacting Kasner-type cosmologies

    Full text link
    It is well known that Kasner-type cosmologies provide a useful framework for analyzing the three-dimensional anisotropic expansion because of the simplification of the anisotropic dynamics. In this paper relativistic multi-fluid Kasner-type scenarios are studied. We first consider the general case of a superposition of two ideal cosmic fluids, as well as the particular cases of non-interacting and interacting ones, by introducing a phenomenological coupling function q(t)q(t). For two-fluid cosmological scenarios there exist only cosmological scaling solutions, while for three-fluid configurations there exist not only cosmological scaling ones, but also more general solutions. In the case of triply interacting cosmic fluids we can have energy transfer from two fluids to a third one, or energy transfer from one cosmic fluid to the other two. It is shown that by requiring the positivity of energy densities there always is a matter component which violates the dominant energy condition in this kind of anisotropic cosmological scenarios.Comment: Accepted for publication in Astrophysics &Space Science, 8 page

    Cosmological scaling solutions in generalised Gauss-Bonnet gravity theories

    Full text link
    The conditions for the existence and stability of cosmological power-law scaling solutions are established when the Einstein-Hilbert action is modified by the inclusion of a function of the Gauss-Bonnet curvature invariant. The general form of the action that leads to such solutions is determined for the case where the universe is sourced by a barotropic perfect fluid. It is shown by employing an equivalence between the Gauss-Bonnet action and a scalar-tensor theory of gravity that the cosmological field equations can be written as a plane autonomous system. It is found that stable scaling solutions exist when the parameters of the model take appropriate values.Comment: 10 pages and 5 figure

    Parameterization and Reconstruction of Quasi Static Universe

    Full text link
    We study a possibility of the fate of universe, in which there is neither the rip singularity, which results in the disintegration of bound systems, nor the endless expansion, instead the universe will be quasi static. We discuss the parameterization of the corresponding evolution and the reconstruction of the scalar field model. We find, with the parameterization consistent with the current observation, that the current universe might arrive at a quasi static phase after less than 20Gyr.Comment: minor changes and Refs. added, publish in EPJ

    Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests

    No full text
    corecore